
Microservices under X-Ray
Project Management, Technologies
& Case Studies

How Top Companies Utilized Decentralized

Microservices Development

to Accelerate Software Products Delivery

Case Studies Included

Microservices under X-Ray
Project Management, Technologies & Case Studies

How Top Companies Utilized

Decentralized Microservices Development

to Accelerate Software Products Delivery

Case Studies Included

(Autodesk/AmericanRedCross/Raise/SingleCare/NewsDirect)

Microservices under X-Ray | NG Logic LLC

2 | P a g e

nglogic.com

Copyright © 2020 NG Logic LLC.

All rights reserved. This book or any portion thereof may

not be reproduced or used in any manner whatsoever

without the express written permission of the publisher

except for the use of brief quotations in a book review.

First publication, 2020

Publisher:

NG Logic LLC

400 Concar Dr

San Mateo, CA 94402

info@nglogic.com

+1 (888) 413 3806

https://nglogic.com/

Microservices under X-Ray | NG Logic LLC

3 | P a g e

nglogic.com

Table of Contents

Introduction ... 5

American Red Cross.. 7

Autodesk .. 8

Microservices in a nutshell ... 10

Overview .. 11

Advantages of microservices ... 12

Scalability ... 12

Failure isolation and resilience ... 13

Faster deployments ... 13

Flexibility ... 14

Easy to maintain and understand ... 15

Disadvantages of microservices .. 15

Complexity .. 15

Expensive ... 16

Require organizational maturity .. 17

Microservices design .. 19

Conway’s Law ... 22

Domain driven design .. 24

The right architecture .. 27

Separate data storage ... 28

Loose coupling .. 29

Eventual consistency .. 32

Asynchronous communication ... 33

Miniservices .. 34

Microservices under X-Ray | NG Logic LLC

4 | P a g e

nglogic.com

The technologies behind microservices ... 36

Containers and orchestration .. 37

Development Technologies .. 40

Go ... 40

GRPC .. 42

Kafka .. 43

Micro-frontends.. 43

Microservices outsourcing .. 45

Communication .. 46

Expertise required .. 51

Monolith to microservices conversion the process 55

Outsourcing to CEE.. 63

Advantages of outsourcing to CEE... 64

Challenges of outsourcing to CEE.. 69

Jurisdiction differences: CEE vs. US ... 73

Overview .. 74

Privacy law .. 75

Intellectual property/copyright law .. 78

Why choose a US partner? ... 80

Geographically distributed microservices development: case studies

.. 81

Raise .. 82

SingleCare ... 87

News Direct ... 92

Recommendations .. 97

Microservices under X-Ray | NG Logic LLC

5 | P a g e

nglogic.com

Introduction

Adrian Cockroft put Netflix on the map as a technology

company after he implemented new and dynamic

software architectures that were later (in 2011) coined as

“microservices”.

While still a relatively new type of software architecture,

microservices have gained popularity quickly and have

been widely adopted by industry leaders such as Amazon

and Uber.

By 2026, it is estimated that the global microservices

market size will reach over $3 billion.

“You asked me what I’m most proud of.

I think it’s, basically, that you can’t

mention ‘cloud’ or ‘microservices’ or

whatever without mentioning Netflix at

some point now.”

Adrian Cockcroft

(former Netflix cloud architect)

in an interview.

“

Microservices under X-Ray | NG Logic LLC

6 | P a g e

nglogic.com

Microservice architecture makes businesses faster and

more agile by structuring applications as collections of

services that are reliable, independently deployable, and

highly cooperative.

As Adrian Cockroft puts it:

“But how can microservices help

my company become a market leader?”

you might ask.

Well, here are some examples:

“It’s very hard to find well-written

monoliths. Most of them are tangled

balls of mud with all kinds of

disgusting things going on inside that

are broken in very odd ways that are

hard to debug.”

Adrian Cockcroft

“

Microservices under X-Ray | NG Logic LLC

7 | P a g e

nglogic.com

American Red Cross

✓ ARC is using Volunteer Connection, a large and

complex web system, as a centralized place to manage

all ARC volunteer tasks (including intake, training, and

tracking opportunities and monetary contributions).

✓ NG Logic has partnered with Digital Cheetah, the

vendor of the volunteer management system, to

integrate their system with internal ARC systems (e.g.

Hemasphere, RCView) as well as 3rd party SaaS

providers (e.g. ClassMarker, SurveyMonkey,

Cornerstone) and others.

✓ The integrations were implemented as microservices

deployed on AWS cloud and developed in Python

language. Each service has a back-office UI and uses

internal REST API to communicate with the monolithic

volunteer management system.

✓ With time, the ecosystem of microservices evolved:

now it covers more functional areas and integrates

tightly with the monolithic frontend. NG Logic

developed a dedicated Single Sign On solution that

allowed users to seamlessly navigate across monolith

and microservice end user pages. Following that, NG

Logic started to gradually migrate functionality of the

monolith into the microservices architecture.

✓ Introduction of microservices in this case was a total

success: it allowed multiple teams to work in parallel

on the same product, new modules could be delivered

two times faster than before, and the number of

production issues dropped by 30%.

Microservices under X-Ray | NG Logic LLC

8 | P a g e

nglogic.com

Autodesk

✓ NG Logic was engaged in a close cooperation with the

Autodesk Education Community department and

completed several projects, such as standalone web

applications that integrated via TIBCO with the rest of

the Autodesk eco-system.

✓ In 2017, the department planned a move to

microservices architecture as part of a larger initiative

within Autodesk. NG Logic was part of the transition

process as subject matter experts in areas that NG

Logic developers previously built web apps for.

✓ As part of the effort, NG Logic developed two

microservices that consumed external APIs and

exposed internal interfaces for other microservices.

The services were related to school information

management and license information management.

✓ The frontend of the education community app was

integrated into a single web application and leverages

NG Logic’s microservices to perform backed tasks.

Microservices under X-Ray | NG Logic LLC

9 | P a g e

nglogic.com

In the next chapters, we will take a deep dive into the

“microservices” topic.

Here is a sneak peek:

❖ Microservices in a nutshell: overview, advantages

and disadvantages

❖ Microservices design

❖ The right architecture

❖ Outsourcing to CEE

❖ Geographically distributed microservices

development: detailed case study

o Raise - developing and implementing a

microservice-based architecture, creating new

functionalities across the existing monolith

o Singlecare - new microservice architecture

leveraging Golang backend services, React

frontend, open source database engines, and

Kubernetes

o Newsdirect - benefits of the microservices

architecture without needing to invest in the

overhead required for multiple microservices

management

❖ Recommendations

https://docs.google.com/document/d/1M7H_pKvFZNODKe0Xxt4IaOIa4QikpRsaDnQTs71ZMgg/edit#heading=h.30j0zll
https://docs.google.com/document/d/1M7H_pKvFZNODKe0Xxt4IaOIa4QikpRsaDnQTs71ZMgg/edit#heading=h.30j0zll
https://docs.google.com/document/d/1M7H_pKvFZNODKe0Xxt4IaOIa4QikpRsaDnQTs71ZMgg/edit#heading=h.3dy6vkm
https://docs.google.com/document/d/1M7H_pKvFZNODKe0Xxt4IaOIa4QikpRsaDnQTs71ZMgg/edit#heading=h.2s8eyo1
https://docs.google.com/document/d/1M7H_pKvFZNODKe0Xxt4IaOIa4QikpRsaDnQTs71ZMgg/edit#heading=h.3j2qqm3
https://docs.google.com/document/d/1M7H_pKvFZNODKe0Xxt4IaOIa4QikpRsaDnQTs71ZMgg/edit#heading=h.df2hzw84q1kj
https://docs.google.com/document/d/1M7H_pKvFZNODKe0Xxt4IaOIa4QikpRsaDnQTs71ZMgg/edit#heading=h.df2hzw84q1kj
https://docs.google.com/document/d/1M7H_pKvFZNODKe0Xxt4IaOIa4QikpRsaDnQTs71ZMgg/edit#heading=h.qsh70q
https://docs.google.com/document/d/1M7H_pKvFZNODKe0Xxt4IaOIa4QikpRsaDnQTs71ZMgg/edit#heading=h.3as4poj
https://docs.google.com/document/d/1M7H_pKvFZNODKe0Xxt4IaOIa4QikpRsaDnQTs71ZMgg/edit#heading=h.3as4poj
https://docs.google.com/document/d/1M7H_pKvFZNODKe0Xxt4IaOIa4QikpRsaDnQTs71ZMgg/edit#heading=h.3as4poj
https://docs.google.com/document/d/1M7H_pKvFZNODKe0Xxt4IaOIa4QikpRsaDnQTs71ZMgg/edit#heading=h.3as4poj
https://docs.google.com/document/d/1M7H_pKvFZNODKe0Xxt4IaOIa4QikpRsaDnQTs71ZMgg/edit#heading=h.1pxezwc

Microservices under X-Ray | NG Logic LLC

10 | P a g e

nglogic.com

Microservices

in a nutshell

Microservices under X-Ray | NG Logic LLC

11 | P a g e

nglogic.com

Overview

Microservices are an architecture pattern used in software

development to build systems comprised of independent

units. Microservices are commonly used to decompose a

monolithic application into multiple independent services.

The services are loosely coupled and can be developed

and deployed independently and continuously. Each

microservice functions as a separate piece of software

that can be updated without impacting the rest of the

system. This flexibility gives organizations the ability to

adapt to changing market conditions and rapidly scale

their products.

Microservices interact with each other via asynchronous

communication, which enables the communication from

one microservice to be sent to multiple receivers. This is

important because it minimizes the communication

between microservices and improves the resiliency and

response time of the system, resulting in a better user

experience.

Microservices under X-Ray | NG Logic LLC

12 | P a g e

nglogic.com

Advantages of microservices

Scalability

Scalability is one of the greatest advantages of

microservices. Since each microservice is a separate

element, different components of an application can be

scaled independently. This leads to better performance

and increased development velocity compared to the

monolithic approach, which requires the entire system to

be updated every time a change is made.

SOURCE: APP. DEV. SURVEY

Microservices are ideal for large systems that utilize

multiple platforms and devices and require frequent

updates to meet market demands.

Microservices under X-Ray | NG Logic LLC

13 | P a g e

nglogic.com

Business scalability is a key quality that many investors

look for in start-up companies. A well designed, highly

scalable company with ideas based on detailed market

research attracts investors and brings capital.

A well-rounded product with well-designed scalability

potential is a crucial part of every tech business model. At

the core of every piece of software is its architecture,

which should allow the product to easily and seamlessly

reach its full potential. In many cases, microservices are

the best way for start-ups to achieve scalability for their

products and overall business models.

Failure isolation and resilience

A system with a microservice-based architecture is more

resistant to failures. If one microservice fails, it does not

lead to an entire system failure. Instead of bringing down

the entire system, developers can isolate the issue while

other services remain online.

Additionally, developers can build and deploy updates to

applications without having to bring down and change the

entire application. This results in a better user experience.

Faster deployments

Microservices work independently, so it is not necessary

to change the code for an entire system to modify a

Microservices under X-Ray | NG Logic LLC

14 | P a g e

nglogic.com

specific feature. Developers can change, test, and deploy

individual components without impacting the entire

system. This allows an application to be continually

updated.

New features can be deployed quickly, and product time-

to-market can be reduced. The ability to continually

update and deploy new versions of a system/product is

invaluable for companies who want to keep up with

competitors and with the changing demands of a large

user base. Fast deployments also enable quick bug fixes,

which is critical for maintaining a good user experience.

Flexibility

Microservice-based systems are flexible; developers can

easily add, remove, reconfigure, rearrange, rename, or

replace functionalities on the fly. This is particularly

important for large systems and results in better

dependency handling. It is also easier to make changes

with less risk of regressions.

Therefore, developers have the flexibility to try out new

technologies on individual services; a service utilizing a

specific programming language or technology can coexist

with other services utilizing different technologies.

Microservice architecture also enables organizations to

store data in multiple locations, which makes it possible

to select custom storage types that best support each

service.

Microservices under X-Ray | NG Logic LLC

15 | P a g e

nglogic.com

Easy to maintain and understand

Applications are easier to build and maintain when they

are split into small, individual components. Each

microservice can be treated as a separate element with its

own set of code. This enables more efficient resource

allocation management and is time-efficient since

multiple teams can work simultaneously on a single

software project without stepping on each other’s toes.

Managing small pieces of code is far easier than

managing one massive piece of code, especially when

dependencies are involved. It is easier for a developer to

understand the functionalities within a system when each

service is a separate component.

Microservice-based systems are also easier to maintain

from a security perspective; since each service is isolated,

security threats are typically easier to track down and do

not pose a risk to an entire application.

Disadvantages of microservices

Complexity

Microservices are more complex than monolithic

applications because they are comprised of many

Microservices under X-Ray | NG Logic LLC

16 | P a g e

nglogic.com

components, each of which is a separate moving part.

Each microservice has its own set of code, which means

that multiple programming languages, tools, and

technologies may be at play within the same system.

Additionally, communication between microservices must

be considered. The scale and complexity of a

microservice-based system can rapidly rise with the

addition of messaging middleware, separate databases,

interfaces, etc. The complexity of microservice-based

systems makes them more challenging to implement.

Expensive

Due to their complexity, microservices are often more

expensive than monoliths. It takes more time and

expertise to develop apps in a microservices architecture

than in a monolith, so staff costs are higher.

Developers experienced in microservices are typically

more expensive than regular developers because of their

specific and advanced knowledge set. Depending on the

project, multiple developers may be needed if expertise in

different technologies or programming languages is

required.

Microservices also require more work and expensive

staffing from a maintenance and operations perspective.

After a microservices architecture has been implemented,

it requires maintenance by a site reliability engineer who

Microservices under X-Ray | NG Logic LLC

17 | P a g e

nglogic.com

has experience with microservices orchestration systems

such as Kubernetes, Docker Swarm, or Mesos.

Advanced solutions for monitoring, measuring, tracing,

and debugging the system are also required. The

increased cost of developers, increased time to develop

applications, and need for more home-based staff are the

primary factors that drive up the cost of microservices.

Additionally, communication between microservices can

marginally increase processing costs because each

service requires its own CPU and runtime environment.

Require organizational maturity

Microservices are commonly used by organizations with

large systems and mature management strategies; they

can be difficult to implement and too complex or costly for

start-ups who need to quickly get a minimum viable

product (MVP) to market.

The microservices approach is most successful when an

agile culture is in place that enables frequent

communication and collaboration between multiple teams

who are responsible for different services. The agile

framework helps effectively manage the inherent

complexity of microservices and ensures that developers

understand the system as a whole.

Microservices under X-Ray | NG Logic LLC

18 | P a g e

nglogic.com

Advantages Disadvantages

Scalability Complexity

Failure isolation and

resilience
Expensive

Faster deployments

Require

organizational

maturity

Flexibility

Easy to maintain and

understand

Microservices under X-Ray | NG Logic LLC

19 | P a g e

nglogic.com

Microservices design

Microservices under X-Ray | NG Logic LLC

20 | P a g e

nglogic.com

While there is no formal definition of what microservices

design entails, microservice-based architectures do have

some common characteristics.

First and foremost, services should be designed to

function as individual units that can be replaced and

upgraded independently; each unit should have a single,

defined purpose. Services should be formed based on

business needs and capabilities such as inventory

management, user management, and delivery

management.

Microservices Adaptation

SOURCE: APP. DEV. SURVEY

When designing services, developers should carefully

define service boundaries and determine protocols

required for communication between services. Typically,

communication between services is achieved via REST

Microservices under X-Ray | NG Logic LLC

21 | P a g e

nglogic.com

web services API calls. Decentralization also tends to be a

key feature of microservices design.

Assigning a team to develop, deploy, maintain, and

support each service is often one of the most successful

approaches to microservices, especially when

development teams are geographically distributed. Most

approaches to microservices design are based to some

extent on Conway’s Law and domain driven design (DDD).

Microservices under X-Ray | NG Logic LLC

22 | P a g e

nglogic.com

Conway’s Law

Conway’s Law was developed by Melvin Conway in 1967

and states that “any organization that designs a system

(defined broadly) will produce a design whose structure is

a copy of the organization’s communication structure”.

In other words, organizations develop software and

systems that match their internal

communication/organizational structure. The law

assumes that for software components to interface and

function properly, coordination and communication must

occur between the developers who are responsible for the

respective components.

Conway’s Law is observable in software development; it is

common for the software structure to end up mirroring the

communication channels within the software

development teams.

However, a better approach is to structure the

development teams to mirror the system domains of a

project. It is best to ensure that the team structure

matches the optimal system structure for the domains

being modelled.

Teams that are working on the specific domain or bounded

context should ideally be in the same contractor, office,

time zone, or communication unit. In other words, teams

Microservices under X-Ray | NG Logic LLC

23 | P a g e

nglogic.com

should be split based on how business domains are

defined and divided rather than by other factors such as

developer availability and historical splits.

If an organization struggles due to communication issues

between domains, utilizing cross-functional teams could

be a solution.

For example, assume Team A is responsible for the

frontend of a system and Team B is responsible for the

backend. If the frontend and backend have difficulty

communicating with each other, it is likely worthwhile to

move someone from Team A to Team B and vice versa.

However, changing teams mid-project can be challenging,

especially if the teams are structured based on different

types of technologies. These challenges can be avoided

from the start by utilizing Conway’s Law to organize teams

by domain instead of by other factors such as technology.

Taking this approach will naturally result in cross-

functional teams with shared domain experience. Teams

are less likely to hand off problems to other teams and

more likely to internally troubleshoot and resolve system

communication issues.

Microservices under X-Ray | NG Logic LLC

24 | P a g e

nglogic.com

Domain driven design

One can see the influence of Conway’s Law in domain

driven design (DDD), a general framework for software

design that is commonly used to design microservices. It

involves defining the structure of a system and defining

design patterns used to create the domain model.

The first step of designing an effective microservice-based

architecture using DDD is to analyze the business domain

in order to understand functional requirements of the

system. The output of this step should include a

description of the domain. The business domain can be

decomposed into subdomains if needed.

After the domain has been analyzed, bounded contexts of

the domain(s) should be defined. This is necessary

because an entire business model is typically too complex

to understand as a single unit. Bounded contexts allow

developers to mark conceptual boundaries and separate

them.

Each bounded context has its own ubiquitous language

and contains a domain model that represents a

subdomain of the larger system. Each bounded context

represents an individual system function and should be

assigned to a single team. Within each bounded context,

contents need to be defined.

Microservices under X-Ray | NG Logic LLC

25 | P a g e

nglogic.com

To accomplish this, DDD concepts such as entities,

aggregates, value objects, and domain services should be

used. A detailed description of how to define bounded

context contents is outside the scope of this book.

Lastly, results from the previous steps should be used to

identify the best microservices for the system. Aggregates

should be assessed as potential microservices.

Aggregates that are good candidates for microservices are

loosely coupled, derived from a business need, and have

good functional linkage. Domain services may also be

good candidates for microservices.

When identifying microservices, several factors should be

considered. Each service should have a single

responsibility; a single microservice should not implement

more than one bounded context (though a bounded

context may be implemented by multiple microservices).

Depending on the overall architecture, the development

teams may want to split a service by function (backend for

frontend, data access, intercommunication, etc.) or keep

all aspects of a service in a single microservice.

When making this decision, it is important to consider if

splitting will cause the resulting services to be overly

chatty; if this is the case, it is likely better to leave the

functions as part of the same service.

Microservices under X-Ray | NG Logic LLC

26 | P a g e

nglogic.com

Each microservice should be small enough that it can be

built by a small, independent team that is responsible for

all aspects of the microservice, including business model,

design, architecture, implementation, deployment, and

maintenance.

It is also important to ensure that microservices are not

tightly coupled. Building small, loosely coupled

microservices that can be managed by independent

teams ensures that the services can evolve over time to

meet business needs.

Microservices under X-Ray | NG Logic LLC

27 | P a g e

nglogic.com

The right architecture

Microservices under X-Ray | NG Logic LLC

28 | P a g e

nglogic.com

Implementing properly designed architecture is an

important factor for achieving success with microservices.

Desirable design elements include separate data storage,

loose coupling, eventual consistency, and asynchronous

communication.

Small organizations that do not have the resources

needed to maintain the complex architecture associated

with microservices may opt to use miniservices, which

offer the benefit of scalability with less complexity.

Separate data storage

Each microservice should have its own data storage that

contains information relevant to the microservice. It is

important that microservices do not share the same

database because it results in tightly coupled services; if

the design or data structure of the database changes, all

of the services that rely on the database have to be

updated.

Therefore, a common database should not be the solution

for integrating features or services. The data model of a

service is considered internal and subject to change; other

services cannot rely on it to implement inbound or

outbound flows.

Microservices under X-Ray | NG Logic LLC

29 | P a g e

nglogic.com

Instead, properly designed APIs or materialized views

should be used. Using the APIs that are well documented

and part of the official interface ensures that changes to

the service’s dependencies will not break the functionality.

If the underlying service does not expose a data view

required for implementing the functionality, consider

building a materialized view inside the service based on

incoming events from the services that are depended

upon.

Since events are also part of the official API and changes

to the API are properly managed, this approach will not

result in a tight coupling that direct database access

would cause.

Loose coupling

Loose coupling of services is key in a microservice-based

architecture; services do not need to be aware of the

existence of other services, and services should not rely

on the availability of other services.

The goal of loose coupling is to minimize unnecessary

interaction between services and reduce the risk that

changes made to one service will negatively impact or

change another service.

Microservices under X-Ray | NG Logic LLC

30 | P a g e

nglogic.com

Loose coupling is important because it enables failure

isolation in a system; if one service goes down, it does not

bring the entire system down.

Distributed transactions, or transactions that span over

multiple services, should be avoided in a microservice-

based architecture. Distributed transactions are a form of

strong coupling at the data model level and can lead to an

increase in system failures.

While failures occur at the individual service level, they are

a part of a larger sequence of actions that impact the

entire system. If a single service permanently fails,

compensating actions should be emitted by the service to

initiate error conditions and cleanups in other related

services.

For example, consider an account set-up process that

requires actions in three different services. If an action

fails in one of the services but is completed in the other

two, the failed microservice should emit events that inform

the system that the account has an unrecoverable error

and needs to be cleaned up.

There are several ways to mitigate the risks of distributed

transactions, including designing without the need for

transactions, two-phase commit (2PC) protocol, and saga

patterns. Designing a system without the need for

transactions is effective, but not always achievable.

Microservices under X-Ray | NG Logic LLC

31 | P a g e

nglogic.com

The 2PC approach utilizes a coordinator for distributed

transactions.

Saga patterns are architectural patterns used to execute

transactions involving multiple services. Each service in a

sequence of transactions (i.e. saga) is dependent on the

successful execution of the previous service/transaction.

If a transaction fails, the saga will execute a compensating

transaction to mitigate the failure.

● In the first phase of 2PC, each service that needs to

contribute data records its data to a log. If the service

is unsuccessful, it emits a failure message; if it is

successful, the service emits an OK message.

● The second phase of 2PC does not begin until all

services respond OK. After this occurs, the

coordinator sends each service commit instructions.

The services respond to the coordinator when the

commit has been successfully implemented. If a

service fails, the coordinator instructs all services to

roll back the transaction.

Microservices under X-Ray | NG Logic LLC

32 | P a g e

nglogic.com

Eventual consistency

Keeping distributed system data consistent at all times is

often a complex task that comes at the cost of system

performance and resiliency. To mitigate this risk, the

microservices architecture should embrace eventual

consistency to achieve high system availability.

The eventual consistency paradigm is very different from

what developers and businesses use when working with

monoliths. In a monolith, user actions or state transitions

are implemented as single transactions that are applied

after a process has finished successfully; transactions are

rolled back in the event of an error. Once the transaction

is committed, the effects of it are immediately visible for

all other components of the system. This approach is

called strong consistency.

In contrast, when using eventual consistency, developers

cannot assume that the effects of a transaction are

immediately visible throughout all the microservices. The

support for eventual consistency needs to be built into the

application from the start.

For example, if a user initiates an action in the Reporting

microservice that results in a document being created in

the Repository microservice, the system cannot assume

that the document will be created right away. Instead, the

request to create the document will be queued, and a

Microservices under X-Ray | NG Logic LLC

33 | P a g e

nglogic.com

handle could be used to refer to the document while it is

being created.

This process should be reflected on the frontend part of

the application, e.g. by a spinning wheel icon next to the

document.

Asynchronous communication

Event-driven asynchronous communication is the main

mode of communication that should be used between

microservices. This type of communication is facilitated

by events that are published to a common event bus.

Microservices emit messages that reflect their internal

state, and other system components may act upon these

messages. The messages are considered part of the API,

and any changes to the API are governed by strict rules.

Synchronous calls (e.g. GRPC, REST) should be avoided

and reserved only for flows that require immediate

feedback, such as an acknowledgement or passing back

a result. Synchronous communication is not desirable

because it creates strong dependency between

microservices.

Microservices under X-Ray | NG Logic LLC

34 | P a g e

nglogic.com

For a service to function, another service must be online,

not overloaded, and available via a network link.

Asynchronous communication is the cornerstone of

resiliency that microservices bring to the table. It enables

failure isolation and minimizes impacts to the system; only

business functions related to the service are affected. If

one module goes down, events are queued and processed

when the module is fixed.

Miniservices

A pure microservices approach calls for implementation

based on the single responsibility principle; each

microservice should be responsible for a single business

function. However, this may lead to a rapid increase in the

number of services, events, and compensating actions the

system needs to handle.

It will also lead to an increase in infrastructure and

monitoring complexity. If a company is not yet ready to

handle the complexity of an entirely microservice-based

system, a miniservice approach could be a good solution

that offers the benefit of scalability with less complexity.

The miniservice approach conforms to the same

architectural guidelines as microservices in terms of intra

service communication. However, it decomposes a

Microservices under X-Ray | NG Logic LLC

35 | P a g e

nglogic.com

system into fewer services, each of which covers more

scope (e.g. multiple bounded contexts) than a

microservice. Less services results in a less complex

system.

Microservices under X-Ray | NG Logic LLC

36 | P a g e

nglogic.com

The technologies behind

microservices

Microservices under X-Ray | NG Logic LLC

37 | P a g e

nglogic.com

In the early days of microservices adoption there were not

many tools and technologies that addressed the issues

that developers face with microservices development.

Soon new ideas, frameworks, stacks, and tools started to

flourish; most were conceptually good, but not stable

enough for serious production use. The APIs and

interfaces lacked widespread community support and

were changed too often, which made upgrades a pain.

Subsequently, the task of choosing the right technologies

for a new system became an important part of project

planning. Extensive experience was required to avoid

pitfalls, such as vendor lock-in or the need to support

abandoned projects in-house. Fortunately, the market is

more mature now and even though the industry is

constantly innovating, there are technologies that have

been battle tested and are solid choices for projects.

However, each project is different and the tools and

technologies always need to be evaluated and chosen

based on the specific project requirements, not generic

recommendations.

Containers and orchestration

Docker has become a de facto standard for managing

dependencies, configuring, and deploying applications. Its

low footprint compared to running virtual machines along

Microservices under X-Ray | NG Logic LLC

38 | P a g e

nglogic.com

with a quicker turnaround time make it a straightforward

choice. As microservice-based systems consist of multiple

components, Docker helps keep all the configuration

details and dependencies under control. An added benefit

is that almost all developers are familiar with Docker, so

no additional time is needed to introduce the technology;

teams can be immediately productive.

Once all the components are packaged as containers, a

container orchestrator comes into play. The purpose of a

container orchestrator is to keep track of the container

lifecycle, distribute the workload, and manage the

platform from a single point. Kubernetes is quickly

becoming a widely adopted standard for managing

containers and infrastructure, and it plays an important

role in microservices projects. Kubernetes allows

developers to easily set up and run a local development

environment and multiple testing/staging environments

by reusing much of the configuration (sometimes

augmented by infrastructure provisioning tools like

Terraform, Cloud formation, or Rancher). This significantly

reduces the time developers and admins need to spend

setting up the environments and resolving issues.

A service mesh is a technology specific to microservice-

based systems that enables high-level concepts like

discovering services, securing communication channels,

balancing advanced loads, and observing traffic,

transactions and workloads. Istio is an increasingly used

service mesh, despite the high learning curve and stability

Microservices under X-Ray | NG Logic LLC

39 | P a g e

nglogic.com

issues it used to have some time ago. Utilizing a service

mesh brings clear benefits to the engineers, because they

do not need to reinvent the wheel nor include the code

performing service mesh tasks into each microservice.

In addition, further data processing and visualization tools

make a big difference for developers and site reliability

engineers. Products like Prometheus, Kibana, and

Grafana allow them to gather metrics from various

sources, display them on dashboards, and analyze them

in a convenient way. Such products can be augmented or

replaced by cloud hosted solutions like Datadog, Newrelic,

and others.

Microservices under X-Ray | NG Logic LLC

40 | P a g e

nglogic.com

Development Technologies

Go

Golang (Go) was created by Google as an infrastructure

management language around 2007 and has gained a lot

of traction as the tech market transitions to cloud and

microservices architecture. While discussing details of the

language is outside the scope of this book, the following is

a condensed list of its advantages that exhibit why it is a

good choice for microservice-based systems and why it

makes a lot of buzz in the community:

Microservices under X-Ray | NG Logic LLC

41 | P a g e

nglogic.com

✓ Compiles by default to one binary in order to avoid

dependency hell, makes deployment less complex

and platform teams happy

✓ Compiled to native code instead of bytecode, which

enables performance comparable to the fastest

languages out there (e.g. C++) and results in reduced

costs on cloud environments

✓ Developer friendly (built-in garbage collector, fast

compile cycles, built-in web server and REST API

framework), so the developers can work efficiently

✓ Simplicity: typically, there is only one way to

implement a specific concept in the language. This

makes handovers of code (e.g. to replace a

developer) much easier compared to other languages

that impose less discipline on developer

✓ Build-in efficient concurrency concepts which makes

leveraging modern CPUs with dozens of cores easy.

✓ Supported and financed by a large organization

(Google) and backwards compatibility with previous

versions

✓ Very good support for testing code, which makes it

easy for developers to test code

Microservices under X-Ray | NG Logic LLC

42 | P a g e

nglogic.com

GRPC

GRPC/Protobuf is a protocol and format for exchanging

data across applications with binding to all popular

languages. It is a natural choice for synchronous

microservices communication (replacing JSON/REST) for

the following reasons:

● Strong typing, type checks, and generated stubs make

enforcing contracts easier than with free form protocols

● Since the underlying protocol is binary, the processing of

messages is typically 6 times faster than JSON based

messages.

● GRPC relies on HTTP/2.0, which comes with performance

improvements and is widely adopted in the other blocks of

the microservices stack. This allows proxies and load

balancers to understand and redirect traffic across the

infrastructure in an optimal way.

Microservices under X-Ray | NG Logic LLC

43 | P a g e

nglogic.com

Kafka

Kafka is a distributed event streaming database that is

often used as a messaging platform for asynchronous

microservices communication. Its advantages include:

Nevertheless, leveraging Kafka in microservice projects

brings its own challenges both for developers and site

reliability engineers. There are alternatives that might be

better suited to a project (e.g. Pulsar); the decision to use

specific tools should be based on detailed evaluation of

the project requirements.

Micro-frontends

While this is not a specific technology per se, it is worth

mentioning in this chapter. Micro-frontends are the

frontend’s answer to microservices; they allow the

frontend of an application to be developed in a similar way

as the backend microservices. In this approach, the

frontend app is split into several modules that can be

● High performance and low latency

● High resiliency and scalability

● Supported by Apache and wide community of

enthusiasts

Microservices under X-Ray | NG Logic LLC

44 | P a g e

nglogic.com

independently developed by engineering teams, either

frontend focused or cross functional, The distinct

advantages of this approach include:

The frontend apps developed by each team are typically

composed using HTML custom elements.

● Simpler, decoupled codebase

● Independent deployment of modules

● Autonomous teams

Microservices under X-Ray | NG Logic LLC

45 | P a g e

nglogic.com

Microservices outsourcing

Microservices under X-Ray | NG Logic LLC

46 | P a g e

nglogic.com

The microservices approach enables easy outsourcing of

individual system parts to external vendors. However,

many companies start off with a monolithic system

architecture.

In these cases, conversion to a microservice-based

architecture is the first step toward implementing a

microservices approach. When outsourcing a system

conversion or parts of an already established

microservices-based system, it is critical to have a

communication plan and build a team with the

appropriate expertise.

Communication

Good communication is critical for successful outsourcing,

because the external vendor or team needs to understand

how the current system works and be able to work

productively with a home-based team towards a shared

vision.

If the system is already properly built using microservices,

the communication process is often simplified because

there is no need to understand the whole system – only

the bounded context (i.e. microservice) the external team

will be working on. In the best-case scenario, enough

documentation will exist to successfully train the new

Microservices under X-Ray | NG Logic LLC

47 | P a g e

nglogic.com

team on system concepts, development guidelines,

platform and infrastructure approach, internal and

external APIs, authorization etc. However, even if good

documentation is in place, communication remains an

important factor for successful completion of a project.

Apart from understanding the system itself, an external

team needs to understand the overall goal of the project,

milestones within the project, and the vision for how the

end product will be used. Appropriate communication

channels are critical to resolve vague project

requirements and effectively collaborate during

development.

It is more common for existing system documentation to

be fragmented, lacking, or nonexistent. In these cases,

good communication is even more critical because an

existing internal team who is familiar with the system

needs to transfer their knowledge to a new external team.

The new team must proactively investigate the system and

achieve an understanding of it. If documentation is

limited, it is necessary to proactively manage the project

on the client side and ensure that appropriate technical

expertise is available. While an outsourced team will have

technical expertise, is important that someone on the

home team be able to effectively communicate and

collaborate with the new team on technical issues to

achieve desired project results. If such expertise is not

available in-house, it is important to look for an external

partner who can both execute the work and function as a

technical consultant.

Microservices under X-Ray | NG Logic LLC

48 | P a g e

nglogic.com

Unfortunately, many internal client teams are not keen on

sharing insider knowledge with contractors or third-party

teams. Such clients often limit knowledge-sharing to

critical pieces of information needed to complete a

specific task, which makes it difficult for an external team

to understand the big picture of a project and effectively

execute work. When clients limit knowledge-sharing, it

may be related to a fear of being replaced by an external

team or losing positions to people in low-cost countries.

Therefore, it is important for management to reassure

existing teams that their jobs are secure and clearly and

honestly state the reasons for bringing an external partner

on board. These reasons may include demand that

exceeds current team capacity or an urgent need for a new

functionality.

Even if good communication channels are in place,

external teams may face some resistance simply because

they are newcomers. External teams should be prepared

to figure things out on their own and drive communication

and task completion. To help deal with such issues, it is

important to have good project management on the

vendor side. It is preferable to have a project manager in

place who has prior experience on similar projects; a good

project manager is critical to maintain team morale and

ensure successful completion of a project, especially

when working with clients who are challenging to

communicate with.

Microservices under X-Ray | NG Logic LLC

49 | P a g e

nglogic.com

Good communication throughout a project helps ensure

quality, reduce rework, and save time and money.

Frequent check-ins, collaboration, and product testing

streamline the development process and should be

integral parts of any product development effort. By

maintaining and effectively managing open channels of

communication, outsourced teams and home teams can

work together to guarantee a strong and functional final

product.

Down the road, issues and blockages can arise. With the

right communication and project management skills, they

can be overcome.

Microservices under X-Ray | NG Logic LLC

50 | P a g e

nglogic.com

Let’s look at some examples

Blockages Answers

Fragmented or nonexistent

system documentation.

The client side should proactively

manage the project on the client

side and ensure that appropriate

technical expertise is available.

Internal client teams are not

keen on sharing insider

knowledge with contractors or

third-party teams.

The external team needs this

knowledge to understand the big

picture of a project and effectively

execute work.

The team is not there to evaluate

the code quality, but to improve and

build on top of current

functionalities.

Fear of being replaced by an

external team or losing positions

to people in low-cost countries

Management must reassure

existing teams that their jobs are

secure and honestly state the

reasons for bringing an external

partner on board (e.g. demand that

exceeds current team capacity or

an urgent need for a new

functionality).

Resistance in front of newcomers It is important to have good project

management on the vendor side

and good communication skills. The

message is that the new team is

there as a team extension.

Microservices under X-Ray | NG Logic LLC

51 | P a g e

nglogic.com

Expertise required

It is important to understand the type of expertise required

for a project when selecting an external vendor.

Therefore, researching potential vendors is a critical step

to ensure successful execution of a project. The design

process for a global or single microservice-based

architecture is smoother when working with an

experienced vendor. Additionally, a vendor with a proven

track record of working on projects with microservice-

based architecture is able to more quickly and effectively

onboard new teams. Familiarity with the microservices

infrastructure/platform (e.g. container orchestration,

service mesh) helps quickly introduce a new team to the

deployment process.

It is crucial to find a vendor who has hands-on experience

with microservices. Since microservices are a relatively

new approach to architecture design, many developers

have only theoretical knowledge of how they are used. To

find a good vendor, hiring managers should look for

experience and skills related to data modelling, API

development, asynchronous and event-driven

programming, orchestration technologies, cloud solutions,

and Docker software. Familiarity with modern trends is

also important; if a vendor uses outdated methods or

workflows, it can have a negative impact on the end

product and user experience.

Microservices under X-Ray | NG Logic LLC

52 | P a g e

nglogic.com

Many vendors have the necessary skills to build a

microservices architecture, so relevant industry-specific

experience is a good way to differentiate a good vendor

from a great vendor for a particular industry or business

need. The best vendor for a project will not only have the

skills needed to develop microservices; they will also have

prior experience with similar projects in the same industry.

Industry experience is important because it allows

developers to quickly understand project needs and

develop efficient solutions. If project case studies from a

vendor are available, they are a good way to measure the

expertise and experience of the vendor when making

hiring decisions.

Potential vendors should also be assessed on their culture

and ability to provide long-term support. Since

communication is key to a successful project, it is

important to find a trustworthy vendor who is a good

culture fit with the home team.

For example – many companies prefer to use an agile

approach to implement microservices; having a small

agile team associated with each independent

microservice is a quick and effective way to develop a

product. If an agile approach is desired, it is important to

find a vendor who has experience with the agile

management style. It is also ideal to form a long-term

partnership with a vendor because switching vendors in

the middle of a project can negatively impact project cost,

quality, and schedule. It is preferable to work with a

Microservices under X-Ray | NG Logic LLC

53 | P a g e

nglogic.com

vendor who is well-established in the market and can see

a project through from start to finish, including post-launch

support.

Microservices under X-Ray | NG Logic LLC

54 | P a g e

nglogic.com

What to analyze when selecting your vendor?

✓ The design process for a global or single microservice-

based architecture is smoother when working with an

experienced vendor.

✓ A vendor with a proven track record of working on projects

with microservice-based architecture is able to more

quickly and effectively onboard new teams.

✓ Familiarity with the microservices infrastructure/platform

(e.g. container orchestration, service mesh) helps quickly

introduce a new team to the deployment process.

✓ Familiarity with modern trends has a positive impact on

the end product and user experience.

✓ Hiring managers should look for experience and skills

related to data modelling, API development, asynchronous

and event-driven programming, orchestration

technologies, cloud solutions, and Docker software.

✓ Relevant industry-specific experience is a good way to

differentiate a good vendor from a great vendor for a

particular industry or business need.

✓ Make sure to analyze vendor case studies to measure the

expertise and experience of the vendor when making

hiring decisions.

✓ Make sure that the vendors’ company culture is a good fit.

If an agile approach is desired, it is important to find a

vendor who has experience with the agile management

style.

Microservices under X-Ray | NG Logic LLC

55 | P a g e

nglogic.com

Monolith to microservices conversion
the process

“Monolith first”

It is typical for a team to start with a monolithic

architecture when building a new product, according to the

principle “monolith first”. In the first stage of new product

development there are many unknowns, including but not

limited to business requirements, market traction,

architecture approach, and performance bottlenecks. It is

in a company’s best interest to develop a minimum viable

product (MVP) as quickly and cost-effectively as possible

to test the product and resolve the many unknowns.

Building an MVP using the monolith approach is desirable

because it takes less time and resources than a similar

project using the microservices approach.

Monolith vs Microservices

Microservices under X-Ray | NG Logic LLC

56 | P a g e

nglogic.com

It is common for the MVP to be built by a small team of

senior developers that can quickly deliver the product to

market. Therefore, one of the most important advantages

of microservices – the ability to work on multiple system

components in parallel – is typically not utilized. Building

a system with microservice-based architecture is more

complex than building a system with monolithic

architecture; it requires more upfront planning, more

advanced architecture, and a common platform. The

complexity required for microservices can offset the

benefits of microservices in the short term and can affect

the MVP release date.

Through the process of developing and releasing the MVP,

developers and product managers learn a lot about their

business needs and what they are trying to build. The

benefit of using a monolith during initial product

development is that changing the code impacts the entire

internal architecture; solutions can easily be tested and

updated. It is far easier to plan, implement, and release

groundbreaking changes to one large system than to

multiple independent and interconnected systems.

The experience gained during development of a version 1

(V1) product is invaluable. The original developers learn all

the stages of product design and implementation and can

help put new teams on the right track and avoid pitfalls

during design of version 2 (V2). Lessons learned from

market research and user feedback are extremely useful

Microservices under X-Ray | NG Logic LLC

57 | P a g e

nglogic.com

when developing V2. Likewise, results of issue processing

and retrospectives on the effectiveness of team

communication can provide valuable insight to a new

team taking on development of V2. As the product grows

and more advanced functionalities are added, it becomes

more challenging to manage all the dependencies using a

monolithic architecture.

Transitioning to microservices

Added complexity makes it more difficult to scale services,

develop and deploy new features, and innovate using a

monolithic architecture. Monoliths utilize a single

technology stack and single codebase; adding, removing,

or updating a functionality impacts the entire system, and

it is nearly impossible to leverage new technologies or

tools when developing new services.

When companies decide to move to a microservice-based

architecture, prep work should be done prior to migration.

Before designing the system architecture, the domain

should be mapped out and its boundaries and

shortcomings understood. There is a good chance,

especially if the system is overblown, that the system is

not comprehensive enough in its current form. A well-

performed mapping will make the structure easier to

understand, and only after properly mapping the system

should the new architecture be designed. During design,

developers should consider whether the monolith will

coexist with microservices. If so, the new architecture

Microservices under X-Ray | NG Logic LLC

58 | P a g e

nglogic.com

must be compatible with the monolith so the two can

effectively communicate. A plan should be established for

how to migrate the system to microservices or incorporate

microservices into the existing system. The plan should

establish the sequence of migration and services to be

added, removed, or replaced.

One of two paths can be taken when transitioning to

microservices. An existing monolith can be decomposed

piece by piece until the entire thing has been migrated into

separate microservices. Alternatively, new functionalities

can be added as new microservices on top of a pre-

existing monolith. The latter approach keeps the old

system intact and builds a new infrastructure around it. It

is the best approach if the current system is bulky or old

and not well understood. Building on top of an existing

system is also desirable if it is not economically sensible

to invest in the system (e.g. a system with a limited user

base). For such cases, it is preferable to build new

functionalities around the monolith.

Regardless of which path is taken, it is crucial to establish

a communication channel for information exchange

between the old monolith and the new microservice

system to ensure the system works properly. The

recommended way of establishing communication is to

make the monolith microservice-aware and have it “play

nicely” with the new entities; this process involves

introducing new internal APIs as well as event generation

and consuming code. Additionally, the monolith should be

Microservices under X-Ray | NG Logic LLC

59 | P a g e

nglogic.com

containerized and corresponding code should be written

to make it compatible with new architecture requirements

(e.g. logging, configuration management, metrics, health

checks). However, executing these steps is not always

possible and depends on the monolith’s original structure.

In such cases, it may be necessary to use previous API

calls (e.g. REST/JSON/XML calls) and separate

operational procedures and teams to keep the old code

up and running.

One of the first steps when transitioning to microservices

is to separate the modules related to new functions from

the main code and build them as separate subprojects

that communicate with the monolith via a well-defined API.

It is important that the API in the monolith be designed in

a way that will enable future splits of the monolith into

smaller services; the API needs to reflect the bounded

contexts in the monolith. The API should be designed and

preferably implemented by experienced developers who

have a solid understanding of the product domain. The

API serves as the entry point that unlocks the functionality

provided by the monolith and allows new microservices to

integrate with it. It also allows the company to start

exploring opportunities related to outsourcing.

Once an API is established, developers can start

decomposing the monolith into smaller services. This is

valuable when it becomes difficult to deliver changes

quickly and reliably to the monolith module or functional

area. Having existing internal API coverage built for other

Microservices under X-Ray | NG Logic LLC

60 | P a g e

nglogic.com

microservices allows developers to have a good

understanding of how the API for new microservices

should be structured. It also makes monolith

decomposition easier because developers can reuse

existing API calls for newly decomposed parts.

A microservice-based system is especially valuable for

performance-sensitive online products. When rapidly

scaling up an online product, the amount of traffic the

system can handle must be considered. It is important to

design the appropriate architecture early on. Since each

microservice scales horizontally with ease, it is simple to

increase capabilities for systems getting large traffic either

on a regular basis or in spikes. Incorporating microservice-

based architecture to extend the functionality of a system

is a low entry barrier solution for scalability since it does

not require redesign of the entire monolith from the

ground up. New solutions can be added on top of existing

code and immediate benefits can be gained from the

improved performance of new functions.

Outsourcing considerations

In today’s fast-moving world, having a flexible business

model that can overcome market fluctuations is one of the

main indicators of a company’s potential scalability. The

ability to freely add or reduce resources when needed is a

highly desirable feature of any company, and it is one

reason why outsourcing has become a highly popular form

Microservices under X-Ray | NG Logic LLC

61 | P a g e

nglogic.com

of organizational development in recent years. Being able

to reduce or scale-up a development team depending on

project peaks enables a company to rapidly react to

emerging demands.

Outsourcing allows a company to rapidly onboard talented

developers to projects, which makes it possible to rapidly

scale a product and business. If the outsourced partner

has experience with similar projects, they are able to

quickly pick up the development. As a result, a company

can immediately start reaping the benefits of new

functionalities and releases to production with less

consumption of core resources. Over time, an outsourced

partner will continue to learn the product domain and be

able to deliver subsequent microservices even faster and

with increasingly less time required from the home team.

If an outsourced partner has offshore development

centers, it may also be less expensive than in-house

development.

Decomposing a monolith requires excellent familiarity with

the product domain and good understanding of the APIs

and data model. It is crucial for outsourced developers to

understand the scope of the monolithic system and how it

functions and communicates to effectively decompose it

into microservices. This familiarity and understanding are

most easily gained by working on less complex

assignments related to the project. While it is possible to

bring an outsourcing partner onboard for the

decomposition process, it is advisable that he or she has

Microservices under X-Ray | NG Logic LLC

62 | P a g e

nglogic.com

prior experience building smaller microservices for the

project.

An alternative approach is for the internal team to focus

on the monolith migration while the outsourced teams

work on other microservices. While this is a perfectly

sensible approach, it foregoes the benefits of having more

than one team possess expertise on the system code.

Including outsourced teams as part of the migration

process enables a company to leverage a partner’s

experience in microservices architecture and ensures that

enough development resources are available.

It is important to keep in mind that outsourcing work may

result in less company control over the project, particularly

over some functionalities and parts of the product. To

minimize this risk, proper product management must be

in place. Technical documentation should be written and

delivered so that the in-house team can take over if

needed. Building up a microservice-based architecture

may get complex and overwhelming at times. Companies

should choose a partner with significant experience and a

proven track record who has been on the market for a

while.

Microservices under X-Ray | NG Logic LLC

63 | P a g e

nglogic.com

Outsourcing to CEE

Microservices under X-Ray | NG Logic LLC

64 | P a g e

nglogic.com

Since microservice-based architecture can be developed

by independent teams working on different functionalities,

the ability to outsource it is in its nature.

Outsourcing this kind of development comes with many

benefits such as lower cost and access to talented

developers. Therefore, many companies have chosen to

outsource microservices work to Central Eastern Europe

(CEE).

Both global corporations and start-up companies are

bringing their assets to the region; over 2,000 Shared

Service Centers (SSCs) are open in the region.

The SSCs employ 640,000 people, many of whom are

highly qualified engineers who bring innovative product

development strategies to the region.

Advantages of outsourcing to CEE

For many companies, lowering project costs is one of the

major factors that makes outsourcing appealing. Cost of

living and average salaries are much lower in CEE than in

the US. However, due to high demand, the salaries in the

IT sector are steadily rising. During the last 10 years,

Poland and other countries in the region have seen an

influx of investment from overseas as more outsourcing

Microservices under X-Ray | NG Logic LLC

65 | P a g e

nglogic.com

centers and software houses have been established.

While it does not have the lowest pricing, the region offers

the perfect balance between the cost and overall quality

of services; companies get the best service for the least

cost. In less expensive locations like South-East and

Eastern Asia, the quality of services is more likely to suffer

due to language barriers or significant time-zone

differences. Apart from staff costs, using an outsourced

team also reduces costs associated with assets such as

additional office space and hardware.

SOURCE: INFOSHARE.PL

Microservices under X-Ray | NG Logic LLC

66 | P a g e

nglogic.com

Access to talented developers is another major advantage

of outsourcing to CEE. There are over one million

developers in CEE. That equates to 1.3 developers for

every 100 people in the labor force in the region. Due to

a mostly free and widely available regional higher

education system that attracts the best candidates, the

region has many quality engineers who are highly valued

in the job market across the world. Each major city

typically has two public universities with computer science

departments and multiple private schools.

There are 11 countries in the CEE region, with Poland

producing the most engineers of all. Poland has over

250,000 IT developers, which is a quarter of the total

number of developers in the region. The high utilization of

the CEE workforce on complex IT projects has resulted in

a large pool of experienced IT specialists who are able to

manage and build the most complex projects.

Poland in particular has long been recognized as having a

problem-solving culture. Poland has produced many of

history’s most exceptional mathematicians, including

Alfred Tarski (emigrated to the US before WWII and then

worked at University of California at Berkeley), Benoit

Mandelbrot (born in Poland, researched and coined the

fractal term), Stefan Banach (creator of functional

analysis), and Stanisław Ulam (one of the designers of

nuclear and thermonuclear weapons in the Manhattan

project). The exceptional quality of Polish engineers is

supported by Hackerrank, one of the largest online

Microservices under X-Ray | NG Logic LLC

67 | P a g e

nglogic.com

candidate screening services. The Hackerrank

leaderboard for best developers by country can be seen

here:

A similar culture to the US also makes CEE a desirable

outsourcing location. CEE has overlapping time-zones

with the US, a similar cultural background, and a

population that mostly speaks fluent English.

https://blog.hackerrank.com/wp-content/uploads/2016/08/Screen-Shot-2016-08-23-at-8.42.39-AM.png
https://blog.hackerrank.com/wp-content/uploads/2016/08/Screen-Shot-2016-08-23-at-8.42.39-AM.png

Microservices under X-Ray | NG Logic LLC

68 | P a g e

nglogic.com

It has been 30 years since the Communist Block

disappeared, and a lot has changed during this time in

CEE societies, especially in Poland. Central and Eastern

Europeans now share similar values with Western

Europeans and Americans. Most people are ready to work

hard to catch up with more advanced countries, and they

tend to be highly motivated, self-contained, honest, and

transparent. It can be difficult to find similar values in

other outsourcing areas such as South and Far-East Asia.

While there may be minor cultural differences in CEE that

need to be understood for successful cooperation, getting

on the same page is usually a very quick and painless

process. People in CEE also embrace western culture in

terms of entertainment, events, etc. and are easy to relate

to. Chances are that a US-based team will be able to chat

with a CEE team about the most recent Netflix series or

music release. While this is not a critical factor for a

successful project, it can improve the communication and

sense of community across the teams.

Outsourcing is particularly advantageous for small

companies who do not have a significant amount of in-

house expertise. Utilizing an experienced external vendor

reduces trial and error and often leads to improvements

in home team performance by allowing the home team to

focus on key tasks without the distraction of non-core

activities.

Microservices under X-Ray | NG Logic LLC

69 | P a g e

nglogic.com

Challenges of outsourcing to CEE

While there are many benefits of outsourcing to CEE, it

does not come without challenges. Fortunately, most of

the challenges can be addressed with good project

management. When looking at the big picture, the pros of

outsourcing to CEE outweigh the cons.

Developers Population in CEE (in thousands)

SOURCE: INFOSHARE.PL

Geographical/time zone difference is the most obvious

challenge of outsourcing to CEE. The time zone in CEE is

six to nine hours ahead of the US. For the East Coast,

Microservices under X-Ray | NG Logic LLC

70 | P a g e

nglogic.com

there are three to four hours of common work time. For

the West Coast, there is a narrower window; developers

are typically wrapping up for the day while US workers are

just starting their work day. To some extent this is a good

arrangement, because work that was completed by the

CEE team during their work day is ready to review at the

beginning of the US work day. This can result in more

efficient feedback loops and the ability to progress work

more quickly. If needed, developers are typically willing to

participate in evening calls if scheduled in advance (or

unplanned in case of emergencies). A shift-based

arrangement is also a viable option; some developers are

willing to adjust their work day to the US time zone or take

shifts doing so within the team.

It is possible that communication challenges may exist

due to a language barrier, but this gap is quickly closing.

Most developers communicate effectively in English, and

many are fluent. The prevalence of the English language

in the technical world has made it necessary for

developers to frequently use and learn it. Reading and

writing technical documents is an easy task for most

developers. If there are communication challenges, they

are easily resolved by appointing one or several people

who are responsible for communicating with the client and

ensuring that all team members are aware of client

expectations.

Some companies have concerns about outsourcing

because they fear they will have less control over the

Microservices under X-Ray | NG Logic LLC

71 | P a g e

nglogic.com

development process and delivery. This is often viewed as

risky since critical parts of internal processes and product

development are handled by engineers and specialists

who are not employees of the company. However, there

are several ways to mitigate this type of risk. A company

can introduce strict controls, metrics, and/or permissions

to more tightly manage the project. Alternatively, a

company can integrate outsourced developers with their

internal team. This will often involve assigning a trusted

and experienced internal employee to supervise the

outsourced team. The latter approach is typically the best

solution because it often leads to improved

communication and a good team dynamic.

Microservices under X-Ray | NG Logic LLC

72 | P a g e

nglogic.com

Advantages Challenges

✓ Lower cost software

development means lower entry

barrier

✓ Need for additional preparation

and adequate project

management

✓ Higher quality of engineers than

in other affordable locations

✓ Time-zone shift might cause

issues for some project types

✓ Access to a large pool of highly

qualified developers

✓ Less control over project if not

done right

✓ Each major CEE city typically has

at least one public university with

computer science departments

and multiple private schools

✓ Communication barrier might

appear with some partners

✓ During the last 10 years, Poland

and other countries in the region

have seen an influx of

investment from overseas as

more outsourcing centers and

software houses have been

established

✓ CEE has overlapping time-zones

with the US, a similar cultural

background, and a population

that mostly speaks fluent English

Microservices under X-Ray | NG Logic LLC

73 | P a g e

nglogic.com

Jurisdiction differences:

CEE vs. US

Microservices under X-Ray | NG Logic LLC

74 | P a g e

nglogic.com

Differences in jurisdiction must be considered when

outsourcing to CEE. Different nations will have different

legal frameworks, laws, and regulatory requirements that

may not align. It is crucial to properly navigate legal issues

to avoid pitfalls on a project; this is most easily

accomplished by partnering with a US-based entity who

has experience with the CEE legal system.

Overview

Many regulations in CEE have roots in the communist era,

which makes the entire justice system dated and complex.

Is can be challenging even for local companies to stand

before the court. For US companies that are accustomed

to a completely different justice system, navigating

through the complicated legal structure quickly becomes

time and resource consuming.

In CEE, even simple lawsuits can take many years to

resolve; complex lawsuits can take decades. While drawn-

out lawsuits are a risk in all countries, the probability of

experiencing one in CEE is far higher than average.

Business related lawsuits are up to three times longer

than the global average in some CEE countries.

Microservices under X-Ray | NG Logic LLC

75 | P a g e

nglogic.com

There are two significant differences between US and EU

law that impact work with CEE development teams –

privacy law and intellectual property/copyright law. Both

are significantly more complex and less liberal in the EU

than in the US. If EU regulations are not followed, issues

are likely to arise down the line. However, successful

transfer of personal information about CEE staff and

transfer of intellectual property created by development

teams (applications and code) are critical for outsourced

development efforts to be effective. Transferring this

information and intellectual property, especially when

developers are spread across different countries, is no

small task. Each developer and the intellectual property

he or she create may be under different jurisdictions with

unique legal regulations. Each software component may

need to be addressed in a separate court under the local

law in the event of intellectual property claims; this adds

another layer of complexity to an already complex legal

system.

Privacy law

The US and EU have vastly different approaches to privacy

law and sensitive data. In the US, data protection is liberal

and less strict than in the EU. Only a limited set of

sensitive personal data such as social security numbers

Microservices under X-Ray | NG Logic LLC

76 | P a g e

nglogic.com

and credit card numbers are legally protected against

unauthorized access or acquisition. In contrast, data

privacy law in the EU is stricter and is regulated across the

entire union by the General Data Protection Regulation

(GDPR).

The GDPR is a legal framework that sets guidelines for the

collection and processing of personal information from

individuals who live in the EU. Data processing includes

any possible interaction with the data – from collection to

erasure or destruction. Every data interaction is strictly

defined by GDPR regulations.

In the EU, any data that can be directly or indirectly

associated with a living individual is defined as “sensitive

data”. This definition is broad in scope; sensitive data may

include but is not limited to IP addresses, racial or ethnic

origin, political opinions, religious or philosophical beliefs,

and trade union membership. Since so much qualifies as

sensitive data, data processing is much more complicated

in the EU than in the US. The EU requires companies who

process personal data to have defined data processing

procedures, policies, and security measures in place.

Additionally, there must be a person on staff who oversees

data processing and ensures compliance with GDPR

requirements. The GDPR is also stricter than the US when

it comes to handling data breaches. The GDPR requires

companies who have experienced a data breach to

document the facts related to the breach and take

remedial action to prevent a recurrence.

Microservices under X-Ray | NG Logic LLC

77 | P a g e

nglogic.com

The GDPR stipulates that sensitive data can only be

transferred from the EU to countries deemed to have

adequate data protection laws; the EU does not recognize

the US as a country that meets this requirement. To

overcome this dilemma and more easily enable global

business, Privacy Shield was introduced in 2016. Privacy

Shield is an agreement between the EU and the US that

allows the transfer of personal data from the EU to the US;

participating companies in the Privacy Shield program

must be established as having adequate data protection.

Privacy Shield enables Non-EU companies to receive

personal data of EU residents, and thus it is an important

tool for any US business that interacts with EU consumers

or staff. In addition to Privacy Shield, it is also important

for US businesses to have a robust and professionally

directed GDPR compliance plan.

Processing sensitive data is critical for any US company

who has EU employees. However, dealing with all the legal

issues of working directly with EU developers may be

daunting to many companies. Finding a US partner that

can manage the process is a much easier approach than

working directly with EU/CEE based developers or

companies. The approach avoids direct data processing

and complicated paperwork, which can be delegated to a

US partner who has experience handling complicated EU

and country specific regulations.

Microservices under X-Ray | NG Logic LLC

78 | P a g e

nglogic.com

Intellectual property/copyright law

The EU and US have completely different approaches to

intellectual property and copyright law that originate from

historic roots. European copyright arose from the

humanistic and creative movement of the French

Revolution (1789-1799), during which the first modern

copyright laws were formulated. US copyright arose from

English legislation, specifically the Statute of Anne (also

known as the Copyright Act 1710), and it was aimed to

improve education and knowledge circulation by

protecting the rights of publishers to ensure they would

receive payment. EU copyright law focuses directly on the

originator of the work in question, while US copyright law

focuses on exploitation rights and any potential financial

implications.

The EU has a unified law across the union called the Rome

II Regulation. The Rome II Regulation recognizes the lex

loci principle regarding intellectual property – i.e. the local

law of the country where the property was established

applies. This means that different laws may apply in

different countries and in some cases even different parts

of the same country (e.g. Germany). When working with a

group of developers located in different countries,

different jurisdictions and laws may apply. The US has no

such regulations; it is up to federal courts to make policies

based on federal law. While this may lead to legal

Microservices under X-Ray | NG Logic LLC

79 | P a g e

nglogic.com

uncertainty at the federal level, there are not any

differences from state to state.

EU legal requirements for copyright transfer are complex

and stricter than those in the US. In the US, there is a

concept called “work made for hire”, which means that the

party for whom a piece of work was created is considered

the author and owner of the work. The EU does not

recognize any such concept (with rare exceptions); the

creator of the work is always considered the owner, and

the party ordering the work cannot claim it as their own

without giving the owner credit. The EU also requires that

intellectual property transfer contracts define all possible

uses for a piece of copyrighted work. This requirement is

particularly problematic in software development since

possible uses are difficult to predict and emerge over the

course of development.

Forming a partnership with a US entity makes it far easier

for a company to handle potential copyright claims. The

company can continue to work in accordance with US

regulations without having to deal with complicated and

diverse intellectual property systems in different

countries. Any legal issues can be handled by the partner

with no implications to the company.

Microservices under X-Ray | NG Logic LLC

80 | P a g e

nglogic.com

Why choose a US partner?

While privacy and copyright law differences are most

pronounced when outsourcing software development,

there are many other legal discrepancies between the US

and the EU. Gaining a full understanding of jurisdictional

differences and the potential issues arising from them

may be a daunting task for many organizations.

Thankfully, there is an easier solution. An organization can

partner with a US-based company with development

centers in CEE. Working with a US partner who has access

to CEE developers is the ideal way for US companies to

reap the benefits of outsourcing work to CEE developers

without having to spend valuable time and resources

dealing with complicated European and country-specific

regulations.

This approach ensures that the organization is working

with a US company for legal contracts and agreements.

Intellectual property rights and principles of trade are

based on US law. The outsourcing company internally

handles any local CEE/EU law complexities or disputes

that arise. This is beneficial to all parties, because the

outsourcing company likely has local CEE/EU branches,

familiarity with the law, and experience with how to avoid

law pitfalls.

Microservices under X-Ray | NG Logic LLC

81 | P a g e

nglogic.com

Geographically

distributed microservices

development:

case studies

Microservices under X-Ray | NG Logic LLC

82 | P a g e

nglogic.com

Raise
The #1 gift card buyback and sell platform, valued at $1

billion by the New York Times in 2016

Raise is a Chicago based start-up that was launched in

2013 by George Bousis. Raise uses an e-commerce

platform that enables third party sellers to sell new or used

gift cards on a fixed-price online marketplace. Now it is

the #1 gift card buyback and sell platform; in 2016, Raise

was valued at $1 billion by the New York Times. Raise’s

entire system was originally based on a Ruby monolith, but

the company wanted to adopt a Golang-based

microservice architecture and React.js frontend. Raise

brought in NG Logic to help develop the system, and

offshore developers successfully transferred knowledge to

the local team during implementation of critical new

functionalities like the “Instant Order”.

Cooperation

NG Logic was engaged to help develop and implement a

microservice-based architecture. This entailed creating

new functionalities across the existing monolith, a

frontend, and a platform. To effectively execute the scope

of work, cooperation and communication with the home

team was needed. However, the initial reaction by existing

developers was cold and passive aggressive. It was

difficult to get information regarding what needed to be

Microservices under X-Ray | NG Logic LLC

83 | P a g e

nglogic.com

done and how to do it. The home team was afraid of losing

influence and jobs to the newcomers, and some of the

home team employees left shortly after.

The offshore team was able to overcome the initial

setbacks by persistently pushing toward the goals set by

the business and working hard to understand the current

system. Ultimately, the team was able to bring value to

the project, and the first piece of new functionality was

delivered on time and with minor friction.

Raise was highly satisfied with the initial delivery, and two

more offshore team members were quickly brought on

board. NG Logic developers became an important part of

the team and Raise continued to be happy with the

performance of offshore team members. With time, NG

Logic was entrusted with a six-month project to convert

part of the monolith into a microservice-based

architecture. A cross-functional Polish sub-team was

formed and worked together on the design,

implementation, and testing of the new system. The team

was responsible for directly communicating to business

stakeholders, reporting progress, and asking questions to

mitigate roadblocks. The project was successful; it was

delivered on time and brought significant improvements

to the end user experience. The team was praised for its

performance.

NG Logic continues to work with Raise to maintain and

update their platform. Today, 75% of the frontend and

Microservices under X-Ray | NG Logic LLC

84 | P a g e

nglogic.com

50% of the backend developers are Polish, and Polish

team members are highly regarded by the US developers.

The Polish teams are trusted with a high amount of

responsibility, such as performing important platform

migrations and upgrades. New hires are often sourced

from Poland due to the talented pool of individuals

available and shorter recruitment timeframes. An added

benefit of offshoring recruitment efforts is that no

additional work is required from the in-house developers.

Lessons learned

✓ Good communication is critical

Working with Raise reinforced how important it is to have

good communication between an outsourced team and an

existing home team. A company’s home-based

development team may initially have concerns and fears

about bringing an outsourced team on-board – fear about

losing their jobs, concern about the quality of engineers

being brought in, etc. These fears and concerns may be

magnified if they have had previous negative experiences

working with far east teams, which often do not produce

high quality work. It is important for management on both

the client and vendor side to address these fears and

concerns. Management should ensure that the existing

team understands the purpose of bringing external

resources to the project, and it should be reinforced that

external resources are not intended to replace or reduce

Microservices under X-Ray | NG Logic LLC

85 | P a g e

nglogic.com

the headcount of the local team but to bring additional

value to the project.

✓ Teams should work together

Raise had a complex existing system that was challenging

to understand without taking advantage of knowledge

transfer between new and existing teams. To promote

project efficiency, new teams should be allowed to work

alongside existing engineers. This enables new teams to

rapidly gain an understanding of the system and project

requirements. It also is invaluable from a team-building

perspective. Requiring new and existing teams to work

closely for one to three months gets them used to working

together and builds a foundation for trust, communication,

and personal relationships.

✓ Team autonomy results in increased productivity

Allowing the outsourced team to become independent

resulted in a significant productivity boost. Once trust has

been established, it is in a company’s best interest to give

outsourced teams some level of autonomy. Giving a team

full ownership and responsibility for a specific component,

functionality, or microservice allows the team to

streamline their development efforts more efficiently.

However, it is critical to make sure the team has all

necessary resources and is cross-functional. A product

owner and QA procedures should be in place. Metrics and

key performance indicators should be used to measure

team performance and hold team members accountable

for their work.

Microservices under X-Ray | NG Logic LLC

86 | P a g e

nglogic.com

✓ Time zone differences can be overcome

Over the course of working with Raise, it was observed that

time zone differences became less problematic in the long

run. Over time, the home and outsourced teams began to

learn each other’s habits and availability patterns. Soon

enough they were either actively or subconsciously

adjusting their communication to suit the other team’s

availability. Additionally, the amount of on-going

communication decreased over time as the new team

accumulated more knowledge. Remote developers were

usually flexible and willing to respond during their evening

if needed.

Microservices under X-Ray | NG Logic LLC

87 | P a g e

nglogic.com

SingleCare
The healthcare discount services provider who partners

with 35k+ pharmacies - a success story leading to a 20%

increase in website conversion rates

SingleCare is a healthcare discount services provider that

lets customers compare costs of prescription drugs free of

charge. It was founded in 2014 by Rick Bates. SingleCare

has partnerships with over 35,000 pharmacies (including

CVS, Target, Walmart, and Walgreens) and helps

customers save up to 80% on 50,000 drugs.

SingleCare’s original system was a .NET application that

was designed and implemented in a way that required a

significant maintenance effort. As SingleCare became

more successful, more consumers began to use their

platform. The system was unable to handle the influx of

users, which resulted in severe performance bottlenecks.

Adding new functionalities to the existing system was

difficult, time consuming, and resulted in multiple

regressions due to architecture issues. (e.g. lack of

separation of concerns). To add to the problems, the

technology being used was generating substantial

licensing costs. SingleCare needed a solution, and NG

Logic was brought in to help them transition to a

microservice-based system.

Microservices under X-Ray | NG Logic LLC

88 | P a g e

nglogic.com

Cooperation

The first step of the project was a detailed assessment of

SingleCare’s current platform, the current market

situation, and the client’s plans for future expansion. NG

Logic developers, together with the client engineering

team, used the output of this assessment to determine a

path forward. It was jointly decided that the best solution

was to replace the current system with a new one based

on microservice architecture.

The new architecture was designed leveraging Golang

backend services, React.js frontend, open source

database engines, and Kubernetes as the container

orchestrator. The main design goals were aimed at

mitigating bottleneck issues, enabling scalability, and

improving the overall quality of the system to reduce

regressions and improve the user experience. Design

goals included proper separation of domains and

concerns and horizontal scaling to support planned

workloads. The design was also intended to give

SingleCare the ability to scale up the velocity of new

feature delivery as required by business needs and the

ability to run the current and new systems side by side

during the transition period. Successful implementation of

the design goals resulted in improved system

performance and a reduction in system errors. Ultimately,

the new system design led to an improved user experience

and an increase of approximately 20% in website

conversions.

Microservices under X-Ray | NG Logic LLC

89 | P a g e

nglogic.com

Part of the development process also entailed the

establishment of common contracts for interservice

communication (Protobuf definitions). After the plan and

timeline was created to develop the new system and

gradually phase out the old one, the new system was

created and implemented by multiple remote teams

around the world. Each team was assigned a specific

domain/microservice to develop and maintain. To

improve communication and optimize the development

process, a single Platform Team was formed consisting of

Devops resources from all the locations. In addition to

eliminating the need for on-call shifts (the engineers are

on call during their working hours), this strategy assured

that developers had access to a site reliability engineer in

their time zone who spoke their language.

The outsourced team brought significant expertise to the

project that resulted in the creation of a robust and

effective microservices-based system design. The NG

Logic team was quickly recognized as having the most

knowledge and experience required to design and develop

the system. Throughout the project, outsourced engineers

reliably delivered high quality products with minimal

production issues.

Microservices under X-Ray | NG Logic LLC

90 | P a g e

nglogic.com

Lessons learned

✓ Utilize DDD and common contracts

All development teams, especially geographically

dispersed teams, are most effective when domain driven

design principles are applied and common contracts are

agreed on by all teams. Before any development steps

took place, the offshore team identified several system

domains that were divided between two sub-teams. Each

sub-team consisted of resources located in the same time

zone with the expertise required to design and implement

their assigned domains. Using DDD helped ensure

efficient execution of work and appropriate division of

responsibilities. Common contracts were also critical to

achieve consistency on the project. The teams all

collaborated to produce a common approach for

implementing the new system. Together, the teams

developed standard documentation outlining creation and

maintenance of APIs, code standards, test coverage, and

microservices requirements such as logging, metrics, and

tooling.

✓ Establish coding and design standards

One of the first steps when working with any client,

including SingleCare, should be to reach a mutual

agreement between all teams on coding standards and

design patterns that should be used in the development

process. In the initial stages of the project, some of the

teams contributed code that did not meet the standards

of other teams. This issue was resolved by holding a

Microservices under X-Ray | NG Logic LLC

91 | P a g e

nglogic.com

meeting across the teams and architects to discuss and

establish common coding practices and approaches. This

was followed by a requirement for all teams to have their

code reviewed and accepted by at least one member of

another team before it could be merged into the system.

Over time, these reviews resulted in a common

understanding and the establishment of code standards

that enabled the teams to work separately without cross-

team code reviews.

✓ Use automated system testing

Another important takeaway was recognizing the

usefulness of automated end to end testing to help quickly

verify system performance. Over the course of the

project, extensive end to end tests were developed that

leveraged Cypress framework and allowed quick

verification of the consistency of the system before

release. Since there were multiple teams contributing to

the system, this mechanism was useful for identifying

changes that could cause regressions. The continuous

integration system was able to quickly identify offending

changes and the person/team that needed to fix the build.

Microservices under X-Ray | NG Logic LLC

92 | P a g e

nglogic.com

News Direct
The cutting-edge content and news distribution platform

News Direct is a cutting-edge content and news

distribution platform built for the demands of today’s

strategic communications. It is a startup founded by

Gregg Castano (longtime president of Business Wire) in

2019 and headquartered in Norwalk, CT. News Direct

aims to help PR, Corp Comms, and IR professionals bring

their media outreach efforts to the next level. The

company prides itself on redefining the news distribution

industry, and their platform was designed to reinvent

content delivery, re-engineer workflow, revitalize metrics

and ROI, and modernize security and pricing. NG Logic was

brought in to design the architecture of the platform and

develop the main components of the system. Throughout

the process, offshore developers cooperated closely with

News Direct’s US-based team (Golang developers and

devops).

Cooperation

In addition to development requirements, the project had

several non-functional requirements including high

security and high availability. Therefore, it was decided to

use multi-instance deployment with a central controller

component. The backend was split into multiple services

to match the domain of the project, and the services were

https://docs.google.com/document/d/1M7H_pKvFZNODKe0Xxt4IaOIa4QikpRsaDnQTs71ZMgg/edit#heading=h.3as4poj

Microservices under X-Ray | NG Logic LLC

93 | P a g e

nglogic.com

implemented using either Golang or Python/Django based

on the suitability of each technology for the needed

functions. For example, the complex REST-based service

that handles user, permission, and content management

was implemented in Django Rest Framework. Internal

admin pages were implemented using Django Admin, and

performance-sensitive parts used Go programming

language. The services communicate via a REST-based

API for the React.js frontend; on the backend, the services

communicate internally using a combination of GRPC and

Protobuf messages over AWS queues. The offshore team

also developed a full end-to-end testing suite in Cypress

that enabled issue identification early in the development

process.

NG Logic worked with News Direct when they were still a

small start-up company with limited resources to manage

a complex system. Instead of going with a pure

microservice-based approach in which each microservice

has a single responsibility, the offshore team opted to use

a miniservices approach. The application was designed

with several larger components that encapsulate large or

multiple related domains (like user and content

management, publication, conversion, etc.). This allowed

News Direct to reap the benefits of the modular

architecture without needing to invest in the overhead

required for multiple microservices management,

monitoring, communication, diagnostics, etc.

Microservices under X-Ray | NG Logic LLC

94 | P a g e

nglogic.com

News Direct was highly satisfied with the delivery

efficiency of the remote team, who successfully achieved

all project goals such as reinventing content delivery and

modernizing security. The remote team implemented a

specialized WYS/WYG content editor that streamlined the

process of creating professional press releases. In

addition, a set of services was designed and implemented

to reliably publish press releases to multiple targets,

including the largest press agencies such as AP and

Bloomberg. Developers also incorporated high security

design elements in the platform such as two factor

authentication and data encryption. News Direct was so

impressed with the remote team’s performance that the

offshore team grew from six to eleven people over the

course of the project.

Lessons learned

✓ Upfront assignment of services

Initially, there was no clear assignment of responsibility for

the modules/services, and all the developers were

working as a single team. This was helpful in the short

term and facilitated communication and collaboration in

the architecture design phase. However, in the long run it

was difficult to maintain common coding standards and a

common approach to software delivery. These issues

were eventually resolved by assigning responsibility for

services to teams based on their expertise and

geolocation. To avoid such issues, there should be a plan

in place to assign services to teams early in the project.

Microservices under X-Ray | NG Logic LLC

95 | P a g e

nglogic.com

✓ Adaptation to project scope changes

The user experience (UX) design was not finalized until late

in the project because the business team and UX

designers were researching multiple approaches. To keep

the project on schedule, the architecture development

team started their work based on educated assumptions

and discussions with the business stakeholders. As the UX

design progressed, it began to drift from the development

team’s assumptions. Some of the architecture design

concepts did not align with the new UX requirements. The

team adapted quickly to the situation, assessed the UX

requirements, and proposed changes to simplify the

overall architecture and bring it into alignment with the UX

requirements. These changes were approved by the

product owner, added to the backlog, and implemented.

The changes primarily manifested in the types of flows

across microservices. The developers were originally using

asynchronous communication to increase resiliency and

reliability of the system. However, some of the user

interactions with the system required immediate feedback

to the user about the outcome of his or her action.

Consequently, the underlying APIs were modified to

support synchronous communication channels that

matched the UX approach.

Regular technical meetings across multiple teams were

critical for successfully adapting to changes in the project

requirements. If a team member felt that the architecture

Microservices under X-Ray | NG Logic LLC

96 | P a g e

nglogic.com

was not appropriate for a new or changed requirement,

there was a space to discuss the issue and agree on the

required modifications to keep the architecture

consistent.

Microservices under X-Ray | NG Logic LLC

97 | P a g e

nglogic.com

Recommendations

Oh, my... blink twice if you are still reading this.

It was a tough read, but hey, who says microservices are

easy to digest?

It is a fact: microservices are here to stay and to make

businesses more flexible and scalable. A wide range of

companies that differ in size, maturity, and business

model seem to benefit from adopting elements of

microservices into their systems. By gradually moving the

architecture from a monolith approach to a microservice-

based approach, large companies with established

systems can benefit from improved time to market and

performance immediately, without a full overhaul of the

system. Alternatively, startups that need a scalable IT

system that can be quickly built and extended should

consider leveraging microservices architecture from the

start.

When planning to move to microservices architecture, a

good strategy is crucial for success. Do not just buckle up,

start your engine and go full speed ahead. The first step

should always be to review the current system or the new

Microservices under X-Ray | NG Logic LLC

98 | P a g e

nglogic.com

system requirements, identify the pain points or non-

functional requirements, and investigate if microservices

architecture can solve those challenges. Based on the

review, an architecture approach action plan can be

established.

Finding a reliable partner who can help migrate to

microservices can be beneficial for companies that have

no experience with microservices and would like to

reinforce their internal team.

It has been demonstrated by many case studies that

microservices-based projects can be successful using an

outsourcing model and even geographically distributed

development teams. Outsourcing microservices

development comes with many benefits including access

to a larger talent pool, more affordable rates, and quick

staffing.

Now, if you want to move further with a professional, we

would love to hear from you.

Microservices under X-Ray | NG Logic LLC

99 | P a g e

nglogic.com

NG Logic LLC
400 Concar Dr

San Mateo, CA 94402

info@nglogic.com

+1 (888) 413 3806

https://nglogic.com/

	Bez nazwy

